Golem is hosted by Hepforge, IPPP Durham

src/integral/three_point/function_3pC0i [ Modules ]

[ Top ] [ Modules ]

NAME

  Module function_3p_finite

USAGE

  use function_3p_finite

DESCRIPTION

  This module is used to compute IR finite three point functions
  with/without Feynman parameters in n, n+2 dimensions

OUTPUT

  This module exports the functions:
  * f3p_finite, C0  -- functions for the computation of IR finite 
  three-point functions with/without Feynman parameters in n, n+2 dimensions
  * f3p_finite_c -- a function which computes the same thing as f3p_finite, only 
    the format of the return values is different

USES

  * precision (src/module/precision_golem.f90)
  * numerical_evaluation (src/numerical/mod_numeric.f90)
  * dilogarithme (src/module/zdilog.f90)
  * logarithme (src/module/z_log.f90)
  * constante (src/module/constante.f90)
  * parametre (src/module/parametre.f90)
  * array (src/module/array.f90)
  * sortie_erreur (src/module/sortie_erreur.f90)
  * generic_function_2p (src/integrals/two_point/generic_function_2p.f90)
  * multiply_div (src/module/multiply_div.f90)
  * s_matrix_type (src/module/s_matrix_type.f90)

src/integral/three_point/function_3p_finite/f3p_finite [ Functions ]

[ Top ] [ Functions ]

NAME

  Function f3p_finite

USAGE

  real_dim4 = f3p_finite(dim,s1,s2,s3,m1,m2,m3,par1,par2,par3)

DESCRIPTION

  This function computes the IR finite three-point 
  function in n and n+2 dimensions. 

INPUTS

  * s1 -- a real (type ki), p1^2
  * s2 -- a real (type ki), p2^2
  * s3 -- a real (type ki), p3^2
  * m1 -- a real/complex (type ki), the first mass squared
  * m2 -- a real/complex (type ki), the second mass squared
  * m3 -- a real/complex (type ki), the third mass squared
  * par1 -- an integer, the label of the third Feynman parameter
  * par2 -- an integer, the label of the second Feynman parameter
  * par3 -- an integer, the label of the first Feynman parameter
  Note that par1,par2 and par3 are supposed to be ordered, i.e.
  par1 <= par2 <= par3, note also that put zero for par1, par2 or par3
  if this Feynman parameter does not exist.
  Use the routine tri_int(t_in,t_out) to order the labels in the module 
  tri_croissant (src/module/tri.f90)

SIDE EFFECTS

  No side effect

RETURN VALUE

  An real (type ki) array of rank 1 and shape 6,
  where the last two entries corresponding to 
  the real/imaginary part of the constant term. 
  the first 4 entries are always zero, but the shape should be 
  uniform for all triangles called in generic_function_3p

src/integral/three_point/function_3pC0i/C0 [ Functions ]

[ Top ] [ Functions ]

NAME

 Function C0

USAGE

  complex = C0(s1,s2,s3,m1,m2,m3)

DESCRIPTION

  This function computes finite scalar three point functions
  with internal masses in 4 dimensions

INPUTS

  * s1 -- a real/complex (type ki), p1^2
  * s2 -- a real/complex (type ki), p2^2
  * s3 -- a real/complex (type ki), p3^2
  * m1 -- a real/complex (type ki), the first internal mass squared
  * m2 -- a real/complex (type ki), the second internal mass squared
  * m3 -- a real/complex (type ki), the third internal mass squared

SIDE EFFECTS

  No side effect, it uses the value of rat_or_tot_par 
  (in src/module/parametre.f90)

RETURN VALUE

  It returns a complex (type ki)

src/integral/three_point/function_3pC0i/f3p_finite_c [ Functions ]

[ Top ] [ Functions ]

NAME

  Function f3p_finite_c

USAGE

  complex_dim2 = f3p_finite_c(s1,s2,s3,m1,m2,m3,par1,par2,par3)

DESCRIPTION

  It computes the same as the function f3p_finite, but the returned
  value is a complex (type ki) array of rank 1 and shape 2

INPUTS

  * dim -- a character (length 3), to compute in n or n+2 dimensions
  * s1 -- a real (type ki), p1^2
  * s2 -- a real (type ki), p2^2
  * s3 -- a real (type ki), p3^2
  * m1 -- a real (type ki), the first mass^2
  * m2 -- a real (type ki), the second mass^2
  * m3 -- a real (type ki), the third mass^2
  * par1 -- an integer, the label of the third Feynman parameter
  * par2 -- an integer, the label of the second Feynman parameter
  * par3 -- an integer, the label of the first Feynman parameter
  Note that par1,par2 and par3 are supposed to be ordered, i.e.
  par1 <= par2 <= par3, note also that put zero for par1, par2 or par3
  if this Feynman parameter does not exist.
  Use the routine tri_int(t_in,t_out) to order the labels in the module 
  tri_croissant (src/module/tri.f90)

SIDE EFFECTS

  No side effect

RETURN VALUE

  An complex (type ki) array of rank 1 and shape 2 corresponding to 
  the (real part,imaginary part) of the coefficient of the 1/epsilon term
  and the (real part,imaginary part) of the constant term. if par1 and/or par2
  are different from zero for dim="n+2", an error is returned.

EXAMPLE