src/integral/three_point/function_3p1m [ Modules ]
NAME
Module function_3p1m
USAGE
use function_3p1m
DESCRIPTION
This module is used to compute the one off-shell external leg three point function with no internal mass with/without Feynman parameters in n, n+2 dimensions
OUTPUT
This module exports two functions: * f3p1m -- a function for the computation of the one off-shell external three point function with/without Feynman parameters in n dimensions * f3p1m_np2 -- a function for the computation of the one off-shell external three point function with/without Feynman parameters in n+2 dimensions
USES
* precision (src/module/precision_golem.f90) * logarithme (src/module/z_log.f90) * func_h0 (src/integrals/three_point/mod_h0.f90) * sortie_erreur (src/module/sortie_erreur.f90)
src/integral/three_point/function_3p1m/f3p1m [ Functions ]
NAME
Function f3p1m
USAGE
real_dim6 = f3p1m(s13,par1,par2,par3)
DESCRIPTION
This function computes the one off-shell external three point function in n dimensions with up to three Feynman parameters in the numerator. It retuns an array of 6 reals corresponding to the real/imaginary part of the coefficient of the 1/epsilon^2 term, real/imaginary part of the coefficient of the 1/epsilon term and the real/imaginary part of the constant term.
INPUTS
* s13 -- real (type ki), the value of the S matrix element corresponding to the external off-shell leg * par1 -- an integer, the label of the third Feynman parameter * par2 -- an integer, the label of the second Feynman parameter * par3 -- an integer, the label of the first Feynman parameter Note that par1,par2 and par3 are supposed to be ordered, i.e. par1 <= par2 <= par3, note also that put zero for par1, par2 or par3 if this Feynman parameter does not exist. Use the routine tri_int(t_in,t_out) to order the labels in the module tri_croissant (src/module/tri.f90)
SIDE EFFECTS
No side effect
RETURN VALUE
An real (type ki) array of rank 1 and shape 6 corresponding to the real/imaginary part of the coefficient of the 1/epsilon^2 term, real/imaginary part of the coefficient of the 1/epsilon term and the real/imaginary part of the constant term.
EXAMPLE
one mass three point function without Feynman parameters f3p1m(s13,0,0,0) with one Feynman parameter at the numerator z_1 f3p1m(s13,0,0,1) with three Feynman parameters at the numerator z_2^2 z_3 f3p1m(s13,2,2,3)
src/integral/three_point/function_3p1m/f3p1m_np2 [ Functions ]
NAME
Function f3p1m_np2
USAGE
real_dim4 = f3p1m_np2(s13,par1,par2,par3)
DESCRIPTION
This function computes the one off-shell external three point function in n+2 dimensions. with up to one Feynman parameter in the numerator. It retuns an array of 4 reals corresponding to the real/imaginary part of the coefficient of the 1/epsilon term and the real/imaginary part of the constant term.
INPUTS
* s13 -- real (type ki), the value of the S matrix element corresponding to the external off-shell leg * par1 -- an integer, the label of the third Feynman parameter = 0 * par2 -- an integer, the label of the second Feynman parameter = 0 * par3 -- an integer, the label of the first Feynman parameter Note that par1,par2 and par3 are supposed to be ordered, i.e. par1 <= par2 <= par3, note also that put zero for par1, par2 or par3 if this Feynman parameter does not exist. Use the routine tri_int(t_in,t_out) to order the labels in the module tri_croissant (src/module/tri.f90)
SIDE EFFECTS
No side effect
RETURN VALUE
An real (type ki) array of rank 1 and shape 4 corresponding to the real/imaginary part of the coefficient of the 1/epsilon term and the real/imaginary part of the constant term. If par1 and/or par2 are different from zero, an error is returned.
EXAMPLE
one mass three point function without Feynman parameters f3p1m_np2(s13,0,0,0) with one Feynman parameter at the numerator z_1 f3p1m_np2(s13,0,0,1)