src/integral/two_point/function_2p_m1m2 [ Modules ]
NAME
Module function_2p_m1m2
USAGE
use function_2p_m1m2
DESCRIPTION
This module is used to compute the two-point function I_2(s,m1^2,m2^2) with/without Feynman parameters in n dimensions
OUTPUT
This module exports the functions: * f2p_m1m2 -- a function for the computation of two-point integrals with non-zero momentum and two masses: I2^n({zj})(s,m1^2,m2^2) with/without Feynman parameters, in n dimensions one of the masses can be zero massless case is already contained in generic_function_2p i2sm1m2: computes the scalar two point function where both propagators have nonzero mass: I_2^n(s,m1^2,m2^2) i2sm1: computes the scalar two point function where only one propagator has nonzero mass: I_2^n(s,m^2,0)
USES
* precision (src/module/precision_golem.f90) * logarithme (src/module/z_log.f90) * sortie_erreur (src/module/sortie_erreur.f90) * function_2p0m_1mi (src/integrals/two_point/function_2p0m_1mi.f90)
src/integral/two_point/function_2p_m1m2/f2p_m1m2 [ Functions ]
NAME
Function f2p_m1m2
USAGE
real_dim4 = f2p_m1m2(s,msq1_r,msq2_r,par1,par2) complex_dim2 = f2p_m1m2(s,msq1_c,msq2_c,par1,par2)
DESCRIPTION
This function computes the two point function in n dimensions with non-zero momentum and two massive propagators with up to two Feynman parameters in the numerator. It retuns an array of 4 reals / 2 complex corresponding to the real/imaginary part of the coefficient of the 1/epsilon term and the real/imaginary part of the constant term. corresponds to eqs.(A.5),(A.7) in hep-ph/0504267 note that for rank one A_j^{2,1}=MINUS I_2(j,...)
INPUTS
* m1,m2 -- real/complex (type ki), the value of the masses * par1 -- an integer, the label of one Feynman parameter * par2 -- an integer, the label of the second Feynman parameter Note that par1,par2 are ordered internally, i.e. par1 <= par2, note also to use zero for par1, par2 if this Feynman parameter does not exist. Use the routine tri_int(t_in,t_out) to order the labels in the module tri_croissant (src/module/tri.f90)
SIDE EFFECTS
No side effect
RETURN VALUE
An real/complex (type ki) array of rank 1 and shape 4/2 corresponding to the real/imaginary part of the coefficient of the 1/epsilon term and the real/imaginary part of the constant term.
EXAMPLE
light-like-momentum two point function without Feynman parameters f2p_m1m2(s,m1sq,m2sq,0,0) with one Feynman parameter in the numerator z_1 f2p_m1m2(s,m1sq,m2sq,0,1) with two Feynman parameters in the numerator z_2^2 f2p_m1m2(s,m1sq,m2sq,2,2) with two Feynman parameters in the numerator z1*z_2 f2p_m1m2(s,m1sq,m2sq,1,2)