golem is hosted by Hepforge, IPPP Durham

src/integrals/four_point/function_4p_ql14 [ Modules ]

[ Top ] [ Modules ]

NAME

  Module function_4p_ql14

USAGE

  use function_4p_ql14

DESCRIPTION

  This module computes the n-dimensional four point function
  corresponding to QCDLoop box number 14
  implemented only without Feynman parameters in the numerator!

OUTPUT

  This module exports the functions f4p_ql14, f4p_ql14_c 
  all the other subroutines/functions of this module are private

USES

  * precision (src/module/precision_golem.f90)
  * numerical_evaluation (src/numerical/mod_numeric.f90)
  * dilogarithme (src/module/zdilog.f90)
  * logarithme (src/module/z_log.f90)
  * constante (src/module/constante.f90)
  * parametre (src/module/parametre.f90)
  * array (src/module/array.f90)
  * sortie_erreur (src/module/sortie_erreur.f90)
  * generic_function_3p (src/integrals/three_point/generic_function_3p.f90)
  * translate (src/module/translate.f90)
  * more_integ_info (src/module/more_integ_info.f90)

src/integrals/four_point/function_4p_ql14/f4p_ql14 [ Functions ]

[ Top ] [ Functions ]

NAME

  Function f4p_ql14

USAGE

  real_dim_4 = f4p_ql14(dim,s1,s2,s3,s4,s12,s23,m1s,m2s,m3s,m4s,par1,par2,par3,par4,mu2)

DESCRIPTION

  computes the n-dimensional four point function
  with 1 internal mass and two massive on-shell legs, 
  corresponding to QCDLoop box number 6

INPUTS

  * dim -- a character , dim="n" (4-2*eps) - dimensional 
  * s12 -- a real (type ki), the S matrix element 2,4 +m1s+m2s
  * s23 -- a real (type ki), the S matrix element 2,3 +m2s+m3s
  * s1 -- a real (type ki), the S matrix element 1,4
  * s2 -- a real (type ki), the S matrix element 2,1
  * s3 -- a real (type ki), the S matrix element 3,2
  * s4 -- a real (type ki), the S matrix element 4,3
  * m1s -- a real (type ki), -1/2*the S matrix element 1,1
  * m2s -- a real (type ki), -1/2*the S matrix element 2,2
  * m3s -- a real (type ki), -1/2*the S matrix element 3,3
  * m4s -- a real (type ki), -1/2*the S matrix element 4,4
  * par1 -- an integer, the label of the fourth Feynman parameter, if none, put 0
  * par2 -- an integer, the label of the third Feynman parameter, if none, put 0
  * par3 -- an integer, the label of the second Feynman parameter, if none, put 0
  * par4 -- an integer, the label of the first Feynman parameter, if none, put 0

  Be careful that, in this function, the arguments par1, par2, par3 and par4
  are mandatory, otherwise use the generic four point function f4p_np2 (f4p_np4).

SIDE EFFECTS

  No side effects

RETURN VALUE

  this function returns an array of four reals (type ki) corresponding to the 
  real imaginary part of 1/epsilon coefficient, real, imaginary part of the 
  finite part (as epsilon --> 0)

EXAMPLE


src/integrals/four_point/function_4p_ql14/f4p_ql14_c [ Functions ]

[ Top ] [ Functions ]

NAME

  Function f4p_ql14_c

USAGE

  complex_dim_4 = f4p_ql14_c(dim,s24,s13,s23,s34,par1,par2,par3,par4,mu2)

DESCRIPTION

  This function also computes  the function f4p_ql14

INPUTS

  * dim -- a character, dim="n" 
  * s12 -- a real (type ki), the S matrix element 2,4 +m1s+m2s
  * s23 -- a real (type ki), the S matrix element 2,3 +m2s+m3s
  * s1 -- a real (type ki), the S matrix element 1,4
  * s2 -- a real (type ki), the S matrix element 2,1
  * s3 -- a real (type ki), the S matrix element 3,2
  * s4 -- a real (type ki), the S matrix element 4,3
  * m1s -- a real (type ki), -1/2*the S matrix element 1,1
  * m2s -- a real (type ki), -1/2*the S matrix element 2,2
  * m3s -- a real (type ki), -1/2*the S matrix element 3,3
  * m4s -- a real (type ki), -1/2*the S matrix element 4,4
  * par1 -- an integer, the label of the fourth Feynman parameter, if none, put 0
  * par2 -- an integer, the label of the third Feynman parameter, if none, put 0
  * par3 -- an integer, the label of the second Feynman parameter, if none, put 0
  * par4 -- an integer, the label of the first Feynman parameter, if none, put 0

SIDE EFFECTS

  No side effects

RETURN VALUE

  this function returns an array of two complexs (type ki) corresponding to the 
   1/epsilon coefficient and the finite part (as epsilon --> 0)

EXAMPLE

  see function f4p_ql14