src/integral/three_point/function_3pC0i [ Modules ]
NAME
Module function_3p_finite
USAGE
use function_3p_finite
DESCRIPTION
This module is used to compute IR finite three point functions with/without Feynman parameters in n, n+2 dimensions
OUTPUT
This module exports the functions: * f3p_finite, C0 -- functions for the computation of IR finite three-point functions with/without Feynman parameters in n, n+2 dimensions * f3p_finite_c -- a function which computes the same thing as f3p_finite, only the format of the return values is different
USES
* precision (src/module/precision_golem.f90) * numerical_evaluation (src/numerical/mod_numeric.f90) * dilogarithme (src/module/zdilog.f90) * logarithme (src/module/z_log.f90) * constante (src/module/constante.f90) * parametre (src/module/parametre.f90) * array (src/module/array.f90) * sortie_erreur (src/module/sortie_erreur.f90) * generic_function_2p (src/integrals/two_point/generic_function_2p.f90) * multiply_div (src/module/multiply_div.f90) * s_matrix_type (src/module/s_matrix_type.f90)
src/integral/three_point/function_3p_finite/f3p_finite [ Functions ]
NAME
Function f3p_finite
USAGE
real_dim4 = f3p_finite(dim,s1,s2,s3,m1,m2,m3,par1,par2,par3)
DESCRIPTION
This function computes the IR finite three-point function in n and n+2 dimensions.
INPUTS
* s1 -- a real (type ki), p1^2 * s2 -- a real (type ki), p2^2 * s3 -- a real (type ki), p3^2 * m1 -- a real/complex (type ki), the first mass squared * m2 -- a real/complex (type ki), the second mass squared * m3 -- a real/complex (type ki), the third mass squared * par1 -- an integer, the label of the third Feynman parameter * par2 -- an integer, the label of the second Feynman parameter * par3 -- an integer, the label of the first Feynman parameter Note that par1,par2 and par3 are supposed to be ordered, i.e. par1 <= par2 <= par3, note also that put zero for par1, par2 or par3 if this Feynman parameter does not exist. Use the routine tri_int(t_in,t_out) to order the labels in the module tri_croissant (src/module/tri.f90)
SIDE EFFECTS
No side effect
RETURN VALUE
An real (type ki) array of rank 1 and shape 6, where the last two entries corresponding to the real/imaginary part of the constant term. the first 4 entries are always zero, but the shape should be uniform for all triangles called in generic_function_3p
src/integral/three_point/function_3pC0i/C0 [ Functions ]
NAME
Function C0
USAGE
complex = C0(s1,s2,s3,m1,m2,m3)
DESCRIPTION
This function computes finite scalar three point functions with internal masses in 4 dimensions
INPUTS
* s1 -- a real/complex (type ki), p1^2 * s2 -- a real/complex (type ki), p2^2 * s3 -- a real/complex (type ki), p3^2 * m1 -- a real/complex (type ki), the first internal mass squared * m2 -- a real/complex (type ki), the second internal mass squared * m3 -- a real/complex (type ki), the third internal mass squared
SIDE EFFECTS
No side effect, it uses the value of rat_or_tot_par (in src/module/parametre.f90)
RETURN VALUE
It returns a complex (type ki)
src/integral/three_point/function_3pC0i/f3p_finite_c [ Functions ]
NAME
Function f3p_finite_c
USAGE
complex_dim2 = f3p_finite_c(s1,s2,s3,m1,m2,m3,par1,par2,par3)
DESCRIPTION
It computes the same as the function f3p_finite, but the returned value is a complex (type ki) array of rank 1 and shape 2
INPUTS
* dim -- a character (length 3), to compute in n or n+2 dimensions * s1 -- a real (type ki), p1^2 * s2 -- a real (type ki), p2^2 * s3 -- a real (type ki), p3^2 * m1 -- a real (type ki), the first mass^2 * m2 -- a real (type ki), the second mass^2 * m3 -- a real (type ki), the third mass^2 * par1 -- an integer, the label of the third Feynman parameter * par2 -- an integer, the label of the second Feynman parameter * par3 -- an integer, the label of the first Feynman parameter Note that par1,par2 and par3 are supposed to be ordered, i.e. par1 <= par2 <= par3, note also that put zero for par1, par2 or par3 if this Feynman parameter does not exist. Use the routine tri_int(t_in,t_out) to order the labels in the module tri_croissant (src/module/tri.f90)
SIDE EFFECTS
No side effect
RETURN VALUE
An complex (type ki) array of rank 1 and shape 2 corresponding to the (real part,imaginary part) of the coefficient of the 1/epsilon term and the (real part,imaginary part) of the constant term. if par1 and/or par2 are different from zero for dim="n+2", an error is returned.
EXAMPLE