src/integrals/three_point/func_gn [ Modules ]
NAME
Module func_gn
USAGE
use func_gn
DESCRIPTION
This module contains several functions for the computation of int^1_0 dx x^(n-1)*ln(a*x^2+b*x+c-i*lambda)/(a*x^2+b*x+c-i*lambda) where a, b and c are real numbers
OUTPUT
This modules exports three functions: * ge -- a function * gl -- a function * gf -- a function
USES
* precision_golem (src/module/precision.f90) * numerical_evaluation (src/numerical/mod_numeric.f90) * sortie_erreur (src/module/sortie_erreur.f90) only : tab_erreur_par,catch_exception,origine_info_par,num_grand_b_info_par,denom_grand_b_info_par * parametre (src/module/parametre.f90) * logarithme (src/module/z_log.f90) * dilogarithme (src/module/zdilog.f90) * constante (src/module/constante.f90) only : i_,un,pi
src/integrals/three_point/func_gn/ge [ Functions ]
NAME
Function ge
USAGE
real_dim2 = ge(n,a,b,c,dist)
DESCRIPTION
This function computes: int^1_0 dx x^(n-1)/(a*x^2+b*x+c-i*lambda) where a, b and c are reals It switches to numerical evaluation if (b^2-4*a*c) < coupure_3p1m_2mi Around the Landau pole, the divergent part is extracted analytically, only the rest is computed numerically
INPUTS
* n -- an integer, the power of x in the integrand * a -- a real (type ki), coefficient of x^2 * b -- a real (type ki), coefficient of x^1 * c -- a real (type ki), coefficient of x^0 * dist -- a logical, true if we are close to the real threshold
SIDE EFFECTS
No side effect, the returned value depends on the global variables rat_or_tot_par, coupure_3p1m_2mi
RETURN VALUE
It returns a real (type ki) array of rank 1 and shape 2
EXAMPLE
src/integrals/three_point/func_gn/gf [ Functions ]
NAME
Function gf
USAGE
real_dim2 = gf(n,a,b,c,dist)
DESCRIPTION
This function computes: int^1_0 dx x^(n-1)*ln(a*x^2+b*x+c-i*lambda)/(a*x^2+b*x+c-i*lambda) where a, b and c are reals It switches to numerical evaluation if (b^2-4*a*c) < coupure_3p1m_2mi Around the Landau pole, the divergent part is extracted analytically, only the rest is computed numerically
INPUTS
* n -- an integer, the power of x in the integrand * a -- a real (type ki), coefficient of x^2 * b -- a real (type ki), coefficient of x^1 * c -- a real (type ki), coefficient of x^0 * dist -- a logical, true if we are close to the real threshold
SIDE EFFECTS
No side effect, the returned value depends on the global variables rat_or_tot_par, coupure_3p1m_2mi
RETURN VALUE
It returns a real (type ki) array of rank 1 and shape 2
EXAMPLE
src/integrals/three_point/func_gn/gl [ Functions ]
NAME
Function gl
USAGE
real_dim2 = gl(n,a,b,c)
DESCRIPTION
This function computes: int^1_0 dx x^(n-1)*ln(a*x^2+b*x+c-i*lambda) where a, b and c are reals here, no need to switch to numerical evaluation no numerical problems when (b^2-4*a*c) = 0
INPUTS
* n -- an integer, the power of x in the integrand * a -- a real (type ki), coefficient of x^2 * b -- a real (type ki), coefficient of x^1 * c -- a real (type ki), coefficient of x^0
SIDE EFFECTS
No side effect, the returned value depends on the global variable rat_or_tot_par
RETURN VALUE
It returns a real (type ki) array of rank 1 and shape 2
EXAMPLE