src/integrals/three_point/func_hf [ Modules ]
NAME
Module func_hf
USAGE
use func_hf
DESCRIPTION
This module contains several functions for the computation of - int^1_0 dy y^n*ln(y*z1+(1-y)*z3)/(y*z1+(1-y)*z3) where z1 and z3 are complex numbers
OUTPUT
This modules exports three functions: * hf -- a function * hf_gen -- a function * hf_c -- a function
USES
* precision (src/module/precision_golem.f90) * numerical_evaluation (src/numerical/mod_numeric.f90) * sortie_erreur (src/module/sortie_erreur.f90) * parametre (src/module/parametre.f90) * logarithme (src/module/z_log.f90) * constante (src/module/constante.f90)
src/integrals/three_point/func_hf/hf [ Functions ]
NAME
Function hf Note that this function is an interface for two other functions hf_rarg and hf_carg
USAGE
real_dim2 = hf(n,a1,a3)
DESCRIPTION
This function computes: - int^1_0 dy y^(n-1)*ln(y*z1+(1-y)*z3)/(y*z1+(1-y)*z3) where z1 = a1 + i b1 and z3 = a3 + i b3 For n=1, it is equal to: -(ln^2(z1)-ln^2(z3))/2/(z1-z3) compatible with the definition of HnF It switches to numerical evaluation if |a1-a3|/max(|a1|,|a3|) < coupure_3p2m
INPUTS
* n -- an integer, the power of y in the integrand * a1 -- a real (type ki), the real part of z1 (time -1) * a3 -- a real (type ki), the real part of z3 (time -1) or * n -- an integer, the power of y in the integrand * a1 -- a complex (type ki), z1 (time -1) * a3 -- a complex (type ki), z3 (time -1)
SIDE EFFECTS
No side effect, the returned value depends on the global variables rat_or_tot_par, coupure_3p2m
RETURN VALUE
It returns a real (type ki) array of rank 1 and shape 2
EXAMPLE
src/integrals/three_point/func_hf/hf_c [ Functions ]
NAME
Function hf_c
USAGE
complex = hf_c(n,a1,a3)
DESCRIPTION
This function computes the same thing as hf but it returns a complex instead of a real array of rank 1 and shape 2
INPUTS
* n -- an integer, the power of y in the integrand * a1 -- a real (type ki), the real part of z1 (time -1) * a3 -- a real (type ki), the real part of z3 (time -1)
SIDE EFFECTS
No side effect
RETURN VALUE
It returns a complex (type ki)
EXAMPLE
src/integrals/three_point/func_hf/hf_gen [ Functions ]
NAME
Function hf_gen
USAGE
real_dim2 = hf_gen(n,a1,b1,a3,b3)
DESCRIPTION
This function computes: int^1_0 dy y^n*ln(y*z1+(1-y)*z3)/(y*z1+(1-y)*z3) where z1 = a1 + i b1 and z3 = a3 + i b3 For n=1, it is equal to: (ln^2(z1)-ln^2(z3))/(z1-z3) It switches to numerical evaluation if |a1-a3|/max(|a1|,|a3|) < coupure_3p2m
INPUTS
* n -- an integer, the power of y in the integrand * a1 -- a real (type ki), the real part of z1 * b1 -- a real (type ki), the imaginary part of z1 * a3 -- a real (type ki), the real part of z3 * b3 -- a real (type ki), the imaginary part of z3
SIDE EFFECTS
No side effect, the returned value depends on the global variables rat_or_tot_par, coupure_3p2m
RETURN VALUE
It returns a real (type ki) array of rank 1 and shape 2
EXAMPLE